Archive for February, 2014

Experimentally we can measure the amount of nutrient a crop removes from the soil or from a nutrient solutions when it grows. That means we can calculate how much nutrient is used to produce a crop. Crop removal can be measured in a few different ways. Sometimes its done in hydroponics. Then its easy to calculate what nutrients are put into the system and what is taken out. You can harvest the crop, dry it and analyse it to see exactly what’s in the root system, the leaves, the actual crop and so on. Of course it will never balance exactly because there are inefficiencies in the system. Plants require energy to grow and some nutrients will be lost to the environment.

Another way of doing it is to grow a crop in its usual situation such as soil, and then go through the same process of measuring what is in the plant at the point of harvesting the crop. Either way you end up with a set of figures such as those in the table below.

Crop removal table

As with hydroponics there is a fudge factor. If you were to apply just those amounts of nutrients you’d not achieve similar yields. Nutrients are always lost the environment because plant roots don’t explore 100% of the soil, so many nutrients may be lost through leaching. Where you have clay soil, if the clay is highly adsorbent (ie you haven’t been applying phosphorus fertilisers or manure for several years), then much of the phosphorus you apply may be adsorbed by the clay and not readily available to the plant (not in the time frame of that crop anyway). Perth’s sands are generally below 1.5% clay so this is not an issue.
Crops vary in their ability to take up nutrients. Some are very efficient, others not so. Much of that is to do with the architecture of their root systems.

The figures above are per hectare so have to be related back to a per plant basis but you can see that there is great variation between the relative amounts of nitrogen, phosphorus and potassium that each crop uses. The figures can vary a lot depending on things like:
• climate – in countries with low light levels generally have lower yields and therefore lower crop removal figures
• crop variety, and
• time of year.

In our work, we find we may have to apply 30-50% more nutrients to a crop over winter than summer. Why? Rain and slower growth are the reasons. No matter how well you apply fertiliser one decent shower of rain will leach most of it away. And because winter is cooler, invariably the time the crop takes to grow is longer and those inefficiencies multiply.

So what is the fudge factor you have to apply to actually grow a crop? About double is not a bad average. Some crops you might get away with 40% more.

The other consideration is the amount of each nutrient that a plant can access. Each nutrient comes with its own set of problems. Nitrogen is highly leachable. In sand so is phosphorus and potassium. In clay soils things may slow down a bit for the latter two but nitrogen is still converted to nitrate within about 24 hours of application in Perth so the advantages of applying ammonium are not great.

Lets now they can relate some of this to the manures and composts you may use. I’ve used this table before.

Manure composition table

Using tomatoes as an example. If you need 297 kg N per hectare – lets say 30 g N per square metre, then that amounts to 3.3 kg of sheep manure (at about 40-50% moisture content) per square metre per crop. And if we double that for our inefficiency factor then we’re up to over 6 kg manure per square metre of ground.

But that amount of sheep manure contains almost the same amount of phosphorus and our tomato crop only needs just under 20% of that! What happens to the rest?

And what about potassium? Our crop needs more potassium than nitrogen so we will be short changed on that score.

You can see how easy it is to waste heaps of phosphorus and probably how much better your yields may be if you added a lot more nitrogen. And why you might run into disease problems and fruit quality issues due to lack of potassium.

We haven’t even considered yet is at what stage in its life cycle our tomato crops needs each of these nutrients. The figure below shows the pattern of nutrient uptake over the life of a tomato crop.

Crop removal Yara

OK, so sheep poo is not a good idea. What about using chook instead? Well, you will be slightly better off for the relative amount of nitrogen to phosphorus but you are even more short changed on potassium!

If you use half sheep and half chook , the ratio of N:P:K changes to 13.5:10.5:6.5. Not a lot of help – well over on P again and well under on K.

What is my message? Well if you’re growing veges organically using animal manures and compost, unless you are operating in a closed system, don’t kid yourself you are being environmentally friendly. You might be saving on food miles and pesticides but the Swan river isn’t going to thank you for all that phosphorus you are dumping in to the groundwater. And if you are using some sort of closed system, at some stage you are going to have to dump nutrient as the levels of phosphorus (and other plant exudates) become toxic – and where will you put it?

Read Full Post »

OK, I know I have done much for a while but this came up on a forum today so it seemed like a good opportunity.

Nematodes are tiny worm like creatures. They are a particular problem around Perth because we have sandy soils. If you live in one of the older suburbs you probably have them for sure!

How can you tell if you have them?

Plants will be unthrifty, they may simply appear unwell, nutrient deficient or they may be getting a lot of other problems. For example roses or eucalypts with nematodes often have stem cankers as a secondary problem. If you dig the plant up and examine the roots they may have knots on them – or they may not. Most people aautomatically think of root knot nematode when they think of nematodes however many other species of nematodes don’t produce galls or knots. You may just see roots that seem more branched and profuse then normal (not to be confused with proteoid roots on banksias, hakeas etc. Or on leaves, you may see angular blackened sections.

Types of nematodes

Most nematodes can’t really be seen by the naked eye – the commonest species may be up to 1mm long. Some nematodes feed from the outside of the root (dagger, needle or stubby-root nematodes), or they may go inside the plant and either stay in one place (eg root knot nematode) or move around inside the plant and feed along the way (lesion or burrowing nematodes. Some other types of nematodes move around inside the plant but feed on above ground parts such as leaves or stems (such as Aphelenchoides that infect leaves of eg Chrysanthemum or some ferns)

How do you get nematodes?

They can come in on plant material which is already infected or in soil/soils mixes.

What conditions do they like?

Ideal soil conditions vary with species. Moist soil is required by all to reproduce and move. The optimum temperature varies with species. The pore size of the soil affects nematode movement. The small pores of clay soils make movement difficult so the nematodes have to move in the spaces between aggregates. The larger pores in coarse sands may be too big to allow nematodes to gain leverage between particles.


The home gardener has a different range of options to a commercial grower. Nematicides used to be available to the home gardener (Nemacur® granules) but aren’t any more. They are all S7 pesticides so pretty nasty! Over time the microbes in the soil that break the chemical down build up numbers so over a period of a few years the pesticides become less and less effective. There are natural predators of nematodes – such as fungi or other nematodes but these aren’t really commercially available. Method more suited to the home gardener include:

Rotation – the use of a rotation crop that is resistant to the particular nematode. So for root knot, that may be something from the grass family eg a grass or sweetcorn or sorghum. This will not eliminate them entirely but reduces numbers to levels that don’t cause problems.

Fallow – leaving an area fallow has a similar effect to rotating with a resistant crop – numbers fall because they can’t reproduce.

Solarisation is another option. The use of clear plastic laid over tilled moist soil for several weeks during the hottest part of the year.

Bio-fumigation – there are some crops that can be grown and hoed back in that contain chemicals that will help control pests and diseases including nematodes – such as some of the mustards. These crop residues are planted densely and hoed in while in full flower. Castor oil plants and marigolds have root exudates that may kill nematodes – they can be grown as rotation crops and hoed in. The type of marigold matters, not all are useful. Tagetes patula has traditionally been the one to use but some other species also work.

Sugar and molasses – In some Brazilian work, 300g granulated sugar per litre of soil at 7 days intervals controlled root knot.

Work in Australia on field grown tomatoes found 150 m³/ha of sawdust plus urea (600 kg/ha) to be quite effective. Molasses at 375 litres/ha per week for 14 weeks helped reduce numbers but was inferior to the sawdust.

In some other trials, urea concentrations of 4% totally eliminated nematodes but adversely affected plants. A combination of urea and molasses reduced the phytotoxic effects. Some papers mention molasses in water with a final sugar concentration of about 2% reduces nematodes numbers by about half in just over a week.

Other plant extracts – many have been trialled. Things like calendula, rosemary, lantana, onion, fennel, datura and liquorice which are ground up and put in water. What works probably depends on the type of nematode and the crop. Many of these trials have been in vitro and not in field situations.

The APPS website has some good info if you’d like to do any further reading.

Read Full Post »